One important feature of a nerve impulse is its all-or-none quality. If the original depolarization is sufficient--if it exceeds some threshold value, (going from the resting level of 70 millivolts to 40 millivolts, positive outside)-- the process becomes regenerative, and reversal occurs all the way to 40 millivolts, negative outside. The magnitude of the reversed potential traveling down the nerve (that is, the impulse) is determined by the nerve itself, not by the intensity of the depolarization that originally sets it going. It is analogous to any explosive event. How fast the bullet travels has nothing to do with how hard you pull the trigger. For many brain functions the speed of the impulse seems to be very important, and the nervous system has evolved a special mechanism for increasing it. Glial cells wrap their plasma membrane around and around the axon like a jelly roll, forming a sheath that greatly increases the effective thickness of the nerve membrane. This added thickness reduces the membrane's capacitance, and hence the amount of charge required to depolarize the nerve. The layered substance, rich in fatty material, is called myelin. The sheath is interrupted every few millimeters, at nodes of Ranvier, to allow the currents associated with the impulse to enter or leave the axon. The result is that the nerve impulse in effect jumps from one node to the next rather than traveling continuously along the membrane, which produces a great increase in conduction velocity. The fibers making up most of the large, prominent cables in the brain are myelinated, giving them a glistening white appearance on freshly cut sections. White matter in the brain and spinal cord consists of myelinated axons but no nerve cell bodies, dendrites, or synapses. Grey matter is made up mainly of cell bodies, dendrites, axon terminals, and synapses, but may contain myelinated axons. The main gaps remaining in our understanding of the impulse, and also the main areas of present-day research on the subject, have to do with the structure and function of the protein channels.